93 research outputs found

    Tratamiento de la disfunción mitocondrial con coenzima Q10

    Get PDF
    Programa de Doctorado en Biotecnología y Tecnología QuímicaLas mitocondrias son orgánulos celulares que desempeñan funciones esenciales para la fisiología de la célula. Las funciones mitocondriales son cruciales para el desarrollo y supervivencia celular. La existencia de alteraciones de la función mitocondrial se ha asociado frecuentemente con la aparición de diversas patologías, entre las que destacan enfermedades neurodegenerativas, enfermedades raras y el cáncer. La disfunción mitocondrial puede originarse por mutaciones en el ADN mitocondrial (mtDNA) o nuclear (nDNA) o por otras causas que afectan secundariamente al metabolismo mitocondrial. La disfunción mitocondrial ha surgido como un común denominador que une diversos trastornos patológicos, tanto en enfermedades mitocondriales como lisosomales. En las enfermedades mitocondriales, nos encontramos específicamente con una disfunción mitocondrial primaria, causada por las mutaciones genéticas, que inciden directamente sobre la composición y la función de la cadena de transporte de electrones. Estas mutaciones provocan defectos en el metabolismo oxidativo mitocondrial, que afecta gravemente a la fisiología celular. En las enfermedades lisosomales, la perdida de función de las enzimas lisosomales, genera un metabolismo anormal de varios sustratos que no se degradan y se acumulan progresivamente en los lisosomas, afectando a su función y secundariamente a otros orgánulos como las mitocondrias. Dado que el tratamiento de estas alteraciones no es completamente satisfactorio existe una necesidad de nuevas terapias para tratar la disfunción mitocondrial, tanto primaria como secundaria. Para ello puede ayudar el hecho de que existen patrones fisiopatológicos comunes a pesar de tener un origen diferente. Las enfermedades mitocondriales son un grupo de patologías con gran heterogeneidad, cuyo nexo de unión es una disfunción en la incapacidad de las mitocondrias afectadas de generar suficiente ATP mediante el sistema de fosforilación oxidativa y la producción aumentada de ROS. Con frecuencia estas enfermedades se acompaña de deficiencia de Coenzima Q10, único transportador de electrones que lleva equivalentes reductores desde el complejo I y el II al complejo III y antioxidante lipídico sintetizado en los humanos. Las enfermedades mitocondriales son enfermedades graves resistentes generalmente a las terapias farmacológicas, a pesar del gran progreso en nuestro entendimiento de las bases moleculares de estas enfermedades. El síndrome MERRF debe su nombre al acrónimo en inglés de Myoclonic Epilepsy with Ragged Red Fibers (epilepsia mioclónica con fibras rojas rasgadas) es una enfermedad mitocondrial primaria causada generalmente por mutaciones puntuales en los genes del ARN de transferencia (tRNA) codificados por el mtDNA. La mutación más común relacionada con este síndrome, que supone un 80% de los casos, es la transición de una adenina a una guanina en la posición 8344 en el gen MT-TK del genoma mitocondrial (m.8344A>G) que codifica para tRNALys. La mutación afecta a la traducción de las proteínas codificadas por el mtDNA dificultando el ensamblaje correcto de los complejos respiratorios y provocando una disfunción de la cadena respiratoria mitocondrial. La primera parte de este trabajo ha consistido en evaluar la efectividad terapéutica de la coenzima Q10 sobre la disfunción mitocondrial primaria y las alteraciones fisiopatológicas presentes en fibroblastos derivados de pacientes con el síndrome MERRF y en cíbridos transmitocondriales portadores de la mutación 8344A>G, para comprobar en estos últimos que las alteraciones fisopatológicas detectadas se debían a las mitocondrias disfuncionales independientemente del contexto nuclear y confirmar así los efectos beneficiosos de la coenzima Q10. Las enfermedades lisosomales describen un heterogéneo grupo de enfermedades raras hereditarias con pérdida de función de los enzimas lisosomales que provocan la acumulación en los lisosomas del material no catabolizado, causando desequilibrio autofágico, acumulación de mitocondrias disfuncionales e inflamación. Clínicamente las enfermedades lisosomales derivan en fenotipos que incluyen visceromegalia, patologías neurológicas, lesiones esqueléticas y muerte prematura. En la actualidad algunas de estas patologías solo disponen de terapias sintomáticas que siguen dos estrategias terapéuticas principales: la terapia de reducción de sustrato (TRS), que se caracteriza por la inhibición de las enzimas implicadas en la producción del sustrato que se acumula, y la terapia de reemplazo enzimático (TRE), que se caracteriza por la administración de forma exógena de la enzima recombinante activa que se encuentra defectuosa. La enfermedad de Gaucher es la enfermedad lisosomal más predominante. Está causada por mutaciones en el gen GBA1 que resultan en una enzima ß-glucocerebrosidasa (GCasa) defectuosa o de insuficiente actividad. Muchas de estas mutaciones conducen a defectos significativos en el plegamiento de la proteína durante la traducción en el retículo endoplasmático (RE), dando como resultado una reducción del transporte de la enzima al lisosoma (degradación mediada por la maquinaria celular de control de calidad celular). La disminución de su actividad catalítica provoca la acumulación de glucosilceramida (GlcCer) y glucosil-esfingolípidos en los lisosomas de macrófagos y órganos viscerales. La enfermedad de Gaucher se subdivide en 3 tipos basados en la edad que comienza a manifestarse la enfermedad y la afectación del sistema nervioso central (SNC). Los pacientes con la enfermedad de Gaucher sin manifestaciones del SNC son clasificados como tipo I, más común; mientras que aquellos pacientes con manifestaciones neurológicas se clasifican en los tipos II y III. Para el trastorno lisosómico de la enfermedad de Gaucher, la TRE supone un alto coste económico y no es muy eficaz para los casos que muestran implicación del sistema nervioso central ya que las enzimas recombinantes no atraviesan la barrera hematoencefálica. De este modo, existe un gran número de pacientes para los cuales no existe tratamiento o la efectividad del mismo es muy baja. Una de la mutaciones más prevalentes en la enfermedad de Gaucher es la variante L444P, que resulta en un incorrecto plegamiento en el RE y fallos en su transporte al lisosoma. Los pacientes en homocigosis para la mutación L444P presentan formas neurológicas severas de la enfermedad. La mutación es un cambio de base 1448T>C en el gen GBA1 que da lugar a la sustitución del aminoácido lisina por prolina en la posición 444 en la cadena polipeptídica, localizada en uno de los dominios no catalíticos de la enzima GCasa. Esta mutación es especialmente refractaria a los tratamientos disponibles, incluida la TRE, por lo que existe la necesidad urgente de desarrollar estrategias terapéuticas que sean útiles en los enfermos con este genotipo. Algunos inhibidores de las enzimas glicosidasas implicadas en enfermedades lisosomales son capaces de unirse al sitio activo y estabilizar el plegamiento apropiado, pudiendo actuar como ¿chaperonas farmacológicas¿ que facilitan el transporte de la forma catalíticamente activa a los lisosomas. De este modo, el desarrollo o la búsqueda de compuestos con actividad de chaperona farmacológica se ha postulado como una posible estrategia terapéutica para el tratamiento de enfermedades lisosomales, de particular interés para aquellas manifestaciones clínicas de la enfermedad que involucran al sistema nervioso central. Recientemente, se ha descrito que los iminoazúcares sp2 bicíclicos derivados de L-idonojirimicina se comportan como chaperonas farmacológicas en fibroblastos humanos de Gaucher homocigotos para la mutación L444P, aumentando la actividad glucocerebrosidasa y el tráfico de la enzima a los lisosomas. Uno de los candidatos más prometedores dentro de esta familia de chaperonas farmacológicas es la N-[N'-(4-adamantan-1-ilcarboxamidobutil) tiocarbamoilo]-1,6-anhidro-L-idonojirimicina (NAdBT-AIJ). Un menor coste de producción, la posibilidad de su administración oral y la capacidad de cruzar la barrera hematoencefálica son algunas de las ventajas que presenta esta terapia para la enfermedad de Gaucher, en especial para los tipos II y III. A pesar de su potencial, la investigación en terapia con chaperonas farmacológicas no ha conducido aún al desarrollo de nuevos fármacos en la práctica clínica. Este objetivo último se facilitaría enormemente con el desarrollo de estrategias que potenciasen la acción de las chaperonas farmacológicas, por ejemplo mediante la combinación con otros compuestos activos. Existe por tanto la necesidad de identificar moléculas que permitan corregir o mejorar las patologías asociadas a las enfermedades lisosomales, en particular a la enfermedad de Gaucher, y que actúen en sinergia con las chaperonas farmacológicas y produzcan un beneficio terapéutico superior. En la segunda parte de este trabajo se describe como el tratamiento combinado de la chaperona farmacológica NAdBT-AIJ para recuperar la actividad de la enzima GCasa y la coenzima Q10 para actuar sobre la disfunción mitocondrial secundaria permite un beneficio terapéutico sinérgico y superior a los tratamientos individuales. Los tratamientos fueron realizados en fibroblastos derivados de varios pacientes con la enfermedad de Gaucher portadores de la mutación L444P en homocigosis.Universidad Pablo de Olavide. Departamento de Fisiología, Anatomía y Biología Celula

    PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system

    Get PDF
    This is an Open Access article under the terms of the Creative Commons Attribution License.Camptothecin (CPT; (S)-(+)-4-ethyl-4-hydroxy-1H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14-(4H,12H)-dione) is a highly cytotoxic natural alkaloid that has not yet found use as chemotherapeutic agent due to its poor water-solubility and chemical instability and, as a consequence, no effective administration means have been designed. In this work, camptothecin has been successfully loaded into iron oxide superparamagnetic nanoparticles with an average size of 14 nm. It was found that surface modification of the nanoparticles by polyethylene glycol enables loading a large amount of camptothecin. While the unloaded nanoparticles do not induce apoptosis in the H460 lung cancer cell line, the camptothecin-loaded nanoparticle formulations exhibit remarkable proapoptotic activity. These results indicate that camptothecin retains its biological activity after loading onto the magnetic nanoparticles. The proposed materials represent novel materials based on naturally occurring bioactive molecules loaded onto nanoparticles to be used as chemotherapeutic formulations. The procedure seems apt to be extended to other active molecules extracted from natural products. In addition, these materials offer the potential of being further implemented for combined imaging and therapeutics, as magnetic nanoparticles are known to be multifunctional tools for biomedicine.This work was supported by Fundación Progreso y Salud, Consejería de Salud (PI0070) and Proyecto de Investigación de Excelencia de la Junta de Andalucía (P10-FQM-6615).Peer Reviewe

    Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease

    Get PDF
    Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD.España, Ministerio de Sanidad FIS PI13/00129España, Ministerio de Economía y Competitividad SAF2013-44021-R and CTQ2010-15848España, Junta de Andalucía CTS-5725 and FQM-146

    Plan de gestión de recursos humanos para oficiales calificados en fuerzas especiales del Ejército del Perú

    Get PDF
    El producto final del proceso de investigación es la propuesta de un plan de gestión de recursos del personal militar de oficiales calificados en Fuerzas Especiales del Ejército del Perú, que tiene un horizonte de cumplimiento de mediano plazo de cuatro años, con la finalidad de identificar formalmente una línea de carrera de las Fuerzas Especiales dentro del Ejército, que no solo la haga competitiva entre las FF. AA. peruanas, sino que le permita hacer más eficiente la gestión de los recursos destinados a la formación y asignación, monitorear el desarrollo profesional de este personal, verificar su contribución al cumplimiento de los roles estratégicos y vincular su desempeño a los objetivos estratégicos institucionales. Los objetivos de este plan en lo que respecta al planeamiento de la formación de las Fuerzas Especiales son: captación eficaz de personal militar de oficiales calificado en Fuerzas Especiales y capacitar eficazmente personal militar de oficiales en operaciones de Fuerzas Especiales. Mientras que para el empleo de este cuerpo de élite son: desarrollar Fuerzas Especiales con capacidad para operar en todos los espectros y rango de las operaciones y acciones militares, y evaluar el desempeño del personal de oficiales de Fuerzas Especiales

    Coenzyme Q10 therapy

    Get PDF
    For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These 2 functions constitute the basis for supporting the clinical use of CoQ10. Also, at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory cofactor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ 10 affects the expression of genes involved in human cell signaling, metabolism and transport, and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, aging-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer, and muscular and cardiovascular diseases have been associated with low CoQ10 levels as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral administration of CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit.This work was supported by grants (FIS PI10/00543, FIS EC08/00076) from the Ministerio de Sanidad, Spain, and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea); Servicio Andaluz de Salud-Junta de Andalucía (SAS 111242); Proyecto de Investigación de Excelencia de la Junta de Andalucía (CTS-5725); and by AEPMI (Asociación de Enfermos de Patología Mitocondrial), FEEL (Fundación Española de Enfermedades Lisosomales) and ALBA Andalucía (Federación Andaluza de Fibromialgia y Fatiga Crónica).Peer Reviewe

    Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    Get PDF
    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as a-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit b4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Naþ/Ca2þ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Naþ/Kþ pump subunit b was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis

    Cytoskeleton Rearrangements during the Execution Phase of Apoptosis

    Get PDF
    Apoptosis is a regulated energy‐dependent process for the elimination of unnecessary or damaged cells during embryonic development, tissue homeostasis and many pathological conditions. Apoptosis is characterized by specific morphological and biochemical features in which caspase activation has a pivotal role. During apoptosis, cells undergo characteristic morphological reorganizations in which the cytoskeleton participates actively. Traditionally, this cytoskeleton rearrangement has been assigned mainly to actinomyosin ring contraction, with microtubule and intermediate filaments both reported to be depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reformed during the execution phase of apoptosis forming an apoptotic microtubule network (AMN). Current hypothesis proposes that AMN is required to maintain plasma membrane integrity and cell morphology during the execution phase of apoptosis. AMN disruption provokes apoptotic cell collapse, secondary necrosis and the subsequent release of toxic molecules which can damage surrounding cells and promote inflammation. Therefore, AMN formation in physiological or pathological apoptosis is essential for tissue homeostasis

    Coenzyme Q10 partially restores pathological alterations in a macrophage model of Gaucher disease

    Get PDF
    Background Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal β-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease. In addition, the beneficial effects of coenzyme Q10 (CoQ) supplementation on cellular alterations were evaluated. Chemically-induced Gaucher macrophages were developed by differentiateing THP-1 monocytes to macrophages by treatment with phorbol 12-myristate 13-acetate (PMA) and then inhibiting intracellular GCase with conduritol B-epoxide (CBE), a specific irreversible inhibitor of GCase activity, and supplementing the medium with exogenous GlcCer. This cell model accumulated up to 16-fold more GlcCer compared with control THP-1 cells. Results Chemically-induced Gaucher macrophages showed impaired autophagy flux associated with mitochondrial dysfunction and increased oxidative stress, inflammasome activation and impaired efferocytosis. All abnormalities were partially restored by supplementation with CoQ. Conclusion These data suggest that targeting mitochondria function and oxidative stress by CoQ can ameliorate the pathological phenotype of Gaucher cells. Chemically-induced Gaucher macrophages provide cellular models that can be used to investigate disease pathogenesis and explore new therapeutics for GD.info:eu-repo/semantics/publishedVersio

    Apoptotic cells subjected to cold/warming exposure disorganize apoptotic microtubule network and undergo secondary necrosis

    Get PDF
    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as ¿-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.This work was supported by FIS PI10/00543 Grant, FIS EC08/00076 Grant, Ministerio de Sanidad, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), SAS 111242 Grant, Servicio Andaluz de Salud-Junta de Andalucía, Proyecto de Investigación de Excelencia de la Junta de Andalucía CTS-5725, and by Asociación de Enfermos de Patología Mitocondrial (AEPMI).Peer Reviewe
    corecore